Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes
نویسندگان
چکیده
Neural spike trains present challenges to analytical efforts due to their noisy, spiking nature. Many studies of neuroscientific and neural prosthetic importance rely on a smoothed, denoised estimate of the spike train’s underlying firing rate. Current techniques to find time-varying firing rates require ad hoc choices of parameters, offer no confidence intervals on their estimates, and can obscure potentially important single trial variability. We present a new method, based on a Gaussian Process prior, for inferring probabilistically optimal estimates of firing rate functions underlying single or multiple neural spike trains. We test the performance of the method on simulated data and experimentally gathered neural spike trains, and we demonstrate improvements over conventional estimators.
منابع مشابه
Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.
Experimental advances allowing for the simultaneous recording of activity at multiple sites have significantly increased our understanding of the spatiotemporal patterns in neural activity. The impact of such patterns on neural coding is a fundamental question in neuroscience. The simulation of spike trains with predetermined activity patterns is therefore an important ingredient in the study o...
متن کاملA Statistical Approach to Functional Connectivity Involving Multichannel Neural Spike Trains
RUIWEN ZHANG : A Statistical Approach to Functional Connectivity Involving Multichannel Neural Spike Trains. (Under the direction of Young K. Truong and Haipeng Shen.) The advent of the multi-electrode has made it feasible to record spike trains simultaneously from several neurons. However, the statistical techniques for analyzing large-scale simultaneously recorded spike train data have not de...
متن کاملInnovative Methodology Generation of Spatiotemporally Correlated Spike Trains and Local Field Potentials Using a Multivariate Autoregressive Process
Gutnisky DA, Josić K. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process. J Neurophysiol 103: 2912–2930, 2010. First published December 23, 2009; doi:10.1152/jn.00518.2009. Experimental advances allowing for the simultaneous recording of activity at multiple sites have significantly increased our understanding of the spa...
متن کاملInferring Single Neuron Properties in Conductance Based Balanced Networks
Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse correlation methods, by recording synaptic inputs and the spike trains of ongoi...
متن کاملVariational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
When governed by underlying low-dimensional dynamics, the interdependence of simultaneously recorded populations of neurons can be explained by a small number of shared factors, or a low-dimensional trajectory. Recovering these latent trajectories, particularly from single-trial population recordings, may help us understand the dynamics that drive neural computation. However, due to the biophys...
متن کامل